Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Toxins (Basel) ; 16(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668589

RESUMO

Coralsnakes (Micrurus spp.) are the only elapids found throughout the Americas. They are recognized for their highly neurotoxic venom, which is comprised of a wide variety of toxins, including the stable, low-mass toxins known as three-finger toxins (3FTx). Due to difficulties in venom extraction and availability, research on coralsnake venoms is still very limited when compared to that of other Elapidae snakes like cobras, kraits, and mambas. In this study, two previously described 3FTx from the venom of M. corallinus, NXH1 (3SOC1_MICCO), and NXH8 (3NO48_MICCO) were characterized. Using in silico, in vitro, and ex vivo experiments, the biological activities of these toxins were predicted and evaluated. The results showed that only NXH8 was capable of binding to skeletal muscle cells and modulating the activity of nAChRs in nerve-diaphragm preparations. These effects were antagonized by anti-rNXH8 or antielapidic sera. Sequence analysis revealed that the NXH1 toxin possesses eight cysteine residues and four disulfide bonds, while the NXH8 toxin has a primary structure similar to that of non-conventional 3FTx, with an additional disulfide bond on the first loop. These findings add more information related to the structural diversity present within the 3FTx class, while expanding our understanding of the mechanisms of the toxicity of this coralsnake venom and opening new perspectives for developing more effective therapeutic interventions.


Assuntos
Clonagem Molecular , Cobras Corais , Venenos Elapídicos , Músculo Esquelético , Receptores Nicotínicos , Animais , Venenos Elapídicos/química , Venenos Elapídicos/toxicidade , Venenos Elapídicos/genética , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Sequência de Aminoácidos , Masculino
2.
Biol Chem ; 401(8): 945-954, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32229648

RESUMO

Ants (Hymenoptera, Apocrita, Aculeata, Formicoidea) comprise a well-succeeded group of animals. Like bees and wasps, ants are mostly venomous, having a sting system to deliver a mixture of bioactive organic compounds and peptides. The predatory giant ant Dinoponera quadriceps belongs to the subfamily Ponerinae that includes one of the largest known ant species in the world. In the present study, low molecular weight compounds and peptides were identified by online peptide mass fingerprint. These include neuroactive biogenic amines (histamine, tyramine, and dopamine), monoamine alkaloid (phenethylamine), free amino acids (e.g. glutamic acid and proline), free thymidine, and cytosine. To the best of our knowledge, most of these components are described for the first time in an ant venom. Multifunctional dinoponeratoxin peptide variants (pilosulin- and ponericin-like peptides) were characterized that possess antimicrobial, hemolytic, and histamine-releasing properties. These venom components, particularly peptides, might synergistically contribute to the overall venom activity and toxicity, for immobilizing live prey, and for defending D. quadriceps against aggressors, predators, and potential microbial infection.


Assuntos
Venenos de Formiga/química , Peptídeos/química , Animais , Formigas , Peso Molecular
3.
Cell Biol Int ; 44(5): 1184-1192, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32027080

RESUMO

Conditioned medium (CM) (cell secretome) is a cocktail of growth factors, cytokines, and other soluble mediators secreted by cells into a culture medium. These growth factors are fundamental in many cellular processes such as cell growth, differentiation, and others and the composition of these factors is individual for each cell type. Osteoclasts are large multinucleated cells that are responsible for bone resorption. Immune and cancer cells are known to produce different growth factors, which are able to induce or inhibit osteoclast differentiation. Herein, we evaluated the effect of CM obtained from the supernatant of activated and non-activated Jukart-E6 cells, as well as from one murine (B16-F10) and one human melanoma cell line (SK-MEL-28). To induce osteoclast differentiation, murine bone marrow mononuclear cells were cultured in the presence and absence of differentiation factors (DF), such as macrophage colony-stimulating factor, prostaglandin E2, receptor activator of nuclear factor-κB ligand, and CM. We measured the concentration of interleukin 6, tumor necrosis factor-α and interferon γ (IFN-γ) in CM that can inhibit or induce osteoclastogenesis. Our study demonstrated that CM obtained from each cell line suppresses or inhibits osteoclasts formation at early and intermediate stages of differentiation in the absence or presence of DF. CM obtained from activated Jurkat-E6 cells demonstrates a stronger effect when compared with CM from naïve Jurkat-E6 cells or human and murine melanoma cells. Moreover, CM obtained from activated Jurkat-E6 cells shows higher secretion of IFN-γ, which is an inhibitor of osteoclastogenesis, in comparison with CM obtained from the three other cell lines. On the other hand, CM derived from B16-F10 cells showed a smaller inhibitory effect when compared with CM derived from the other cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Humanos , Interferon gama/metabolismo , Interleucina-6/metabolismo , Células Jurkat , Melanoma Experimental , Células-Tronco Mesenquimais/citologia , Camundongos , Osteoclastos/citologia , Fator de Necrose Tumoral alfa/metabolismo
4.
Biol Chem ; 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32087061

RESUMO

Ants (Hymenoptera, Apocrita, Aculeata, Formicoidea) comprise a well-succeeded group of animals. Like bees and wasps, ants are mostly venomous, having a sting system to deliver a mixture of bioactive organic compounds and peptides. The predatory giant ant Dinoponera quadriceps belongs to the subfamily Ponerinae that include one of the largest known ant species in the world. In the present study, low molecular weight compounds and peptides were identified by on-line peptide mass fingerprint. These include neuroactive biogenic amines (histamine, tyramine, and dopamine), monoamine alkaloid (phenethylamine), free amino acids (e.g., glutamic acid and proline), free thymidine and cytosine. To the best of our knowledge most of these components are described for the first time in an ant venom. Multifunctional dinoponeratoxin peptides variants (pilosulin- and ponericin-like peptides) were characterized that possess antimicrobial, hemolytic, and histamine-releasing properties. These venom components, particularly peptides, might synergistically contribute to the overall venom activity and toxicity, for immobilizing live prey, and defending D. quadriceps against aggressors, predators and potential microbial infection.

5.
PLoS One ; 9(10): e110723, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25330259

RESUMO

We propose the technique of biogeochemical typing (BGC typing) as a novel methodology to set forth the sub-systems of organismal communities associated to the correlated chemical profiles working within a larger complex environment. Given the intricate characteristic of both organismal and chemical consortia inherent to the nature, many environmental studies employ the holistic approach of multi-omics analyses undermining as much information as possible. Due to the massive amount of data produced applying multi-omics analyses, the results are hard to visualize and to process. The BGC typing analysis is a pipeline built using integrative statistical analysis that can treat such huge datasets filtering, organizing and framing the information based on the strength of the various mutual trends of the organismal and chemical fluctuations occurring simultaneously in the environment. To test our technique of BGC typing, we choose a rich environment abounding in chemical nutrients and organismal diversity: the surficial freshwater from Japanese paddy fields and surrounding waters. To identify the community consortia profile we employed metagenomics as high throughput sequencing (HTS) for the fragments amplified from Archaea rRNA, universal 16S rRNA and 18S rRNA; to assess the elemental content we employed ionomics by inductively coupled plasma optical emission spectroscopy (ICP-OES); and for the organic chemical profile, metabolomics employing both Fourier transformed infrared (FT-IR) spectroscopy and proton nuclear magnetic resonance (1H-NMR) all these analyses comprised our multi-omics dataset. The similar trends between the community consortia against the chemical profiles were connected through correlation. The result was then filtered, organized and framed according to correlation strengths and peculiarities. The output gave us four BGC types displaying uniqueness in community and chemical distribution, diversity and richness. We conclude therefore that the BGC typing is a successful technique for elucidating the sub-systems of organismal communities with associated chemical profiles in complex ecosystems.


Assuntos
Bases de Dados Genéticas , Ecossistema , Metagenoma
6.
Biomed Res Int ; 2014: 675985, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24551848

RESUMO

Animal venoms comprise a naturally selected cocktail of bioactive peptides/proteins and other molecules, each of which playing a defined role thanks to the highly specific interactions with diverse molecular targets found in the prey. Research focused on isolation, structural, and functional characterizations of novel natural biologics (bioactive peptides/proteins from natural sources) has a long way to go through from the basic science to clinical applications. Herein, we overview the structural and functional characteristics of the myoneurotoxin crotamine, firstly isolated from the South American rattlesnake venom. Crotamine is the first venom peptide classified as a natural cell penetrating and antimicrobial peptide (CPP and AMP) with a more pronounced antifungal activity. In contrast to other known natural CPPs and AMPs, crotamine demonstrates a wide spectrum of biological activities with potential biotechnological and therapeutic values. More recent studies have demonstrated the selective in vitro anticancer activity of crotamine. In vivo, using a murine melanoma model, it was shown that crotamine delays tumor implantation, inhibits tumor cells proliferation, and also increases the survival of mice engrafted with subcutaneous melanoma. The structural and functional properties and also the possible biotechnological applications of minimized molecules derived from crotamine are also discussed.


Assuntos
Peptídeos Penetradores de Células , Venenos de Crotalídeos , Sequência de Aminoácidos , Animais , Anti-Infecciosos , Antineoplásicos , Linhagem Celular , Crotalus , Humanos , Melanoma , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , América do Sul
7.
PLoS One ; 9(1): e87556, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498135

RESUMO

BACKGROUND: Dinoponera quadriceps is a predatory giant ant that inhabits the Neotropical region and subdues its prey (insects) with stings that deliver a toxic cocktail of molecules. Human accidents occasionally occur and cause local pain and systemic symptoms. A comprehensive study of the D. quadriceps venom gland transcriptome is required to advance our knowledge about the toxin repertoire of the giant ant venom and to understand the physiopathological basis of Hymenoptera envenomation. RESULTS: We conducted a transcriptome analysis of a cDNA library from the D. quadriceps venom gland with Sanger sequencing in combination with whole-transcriptome shotgun deep sequencing. From the cDNA library, a total of 420 independent clones were analyzed. Although the proportion of dinoponeratoxin isoform precursors was high, the first giant ant venom inhibitor cysteine-knot (ICK) toxin was found. The deep next generation sequencing yielded a total of 2,514,767 raw reads that were assembled into 18,546 contigs. A BLAST search of the assembled contigs against non-redundant and Swiss-Prot databases showed that 6,463 contigs corresponded to BLASTx hits and indicated an interesting diversity of transcripts related to venom gene expression. The majority of these venom-related sequences code for a major polypeptide core, which comprises venom allergens, lethal-like proteins and esterases, and a minor peptide framework composed of inter-specific structurally conserved cysteine-rich toxins. Both the cDNA library and deep sequencing yielded large proportions of contigs that showed no similarities with known sequences. CONCLUSIONS: To our knowledge, this is the first report of the venom gland transcriptome of the New World giant ant D. quadriceps. The glandular venom system was dissected, and the toxin arsenal was revealed; this process brought to light novel sequences that included an ICK-folded toxins, allergen proteins, esterases (phospholipases and carboxylesterases), and lethal-like toxins. These findings contribute to the understanding of the ecology, behavior and venomics of hymenopterans.


Assuntos
Venenos de Formiga/biossíntese , Formigas/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Insetos/biossíntese , Transcriptoma/fisiologia , Animais , Venenos de Formiga/genética , Formigas/genética , Perfilação da Expressão Gênica/métodos , Humanos , Proteínas de Insetos/genética
8.
Toxicon ; 79: 64-71, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24412460

RESUMO

Gyroxin is a serine protease displaying a thrombin-like activity found in the venom of the South American rattlesnake Crotalus durissus terrificus. Typically, intravenous injection of purified gyroxin induces a barrel rotation syndrome in mice. The serine protease thrombin activates platelets aggregation by cleaving and releasing a tethered N-terminus peptide from the G-protein-coupled receptors, known as protease-activated receptors (PARs). Gyroxin also presents pro-coagulant activity suggested to be dependent of PARs activation. In the present work, the effects of these serine proteases, namely gyroxin and thrombin, on PARs were comparatively studied by characterizing the hydrolytic specificity and kinetics using PARs-mimetic FRET peptides. We show for the first time that the short (sh) and long (lg) peptides mimetizing the PAR-1, -2, -3, and -4 activation sites are all hydrolyzed by gyroxin exclusively after the Arg residues. Thrombin also hydrolyzes PAR-1 and -4 after the Arg residue, but hydrolyzes sh and lg PAR-3 after the Lys residue. The kcat/KM values determined for gyroxin using sh and lg PAR-4 mimetic peptides were at least 2150 and 400 times smaller than those determined for thrombin, respectively. For the sh and lg PAR-2 mimetic peptides the kcat/KM values determined for gyroxin were at least 6500 and 2919 times smaller than those determined for trypsin, respectively. The kcat/KM values for gyroxin using the PAR-1 and -3 mimetic peptides could not be determined due to the extreme low hydrolysis velocity. Moreover, the functional studies of the effects of gyroxin on PARs were conducted in living cells using cultured astrocytes, which express all PARs. Despite the ability to cleavage the PAR-1, -2, -3, and -4 peptides, gyroxin was unable to activate the PARs expressed in astrocytes as determined by evaluating the cytosolic calcium mobilization. On the other hand, we also showed that gyroxin is able to interfere with the activation of PAR-1 by thrombin or by synthetic PAR-1 agonist in cultured astrocytes. Taken together, the data presented here allow us showing that gyroxin cleaves PARs-mimetic peptides slowly and it does not induce activation of PARs in astrocytes. Although gyroxin does not mobilize calcium it was shown to interfere with PARs activation by thrombin and PAR-1 agonist. The determination of gyroxin enzymatic specificity and kinetics on PAR-1, -2, -3, and -4 will potentially help to fill the gap in the knowledge in this field, as the PARs are still believed to have a key role for the gyroxin biological effects.


Assuntos
Venenos de Crotalídeos/química , Crotalus , Receptores Ativados por Proteinase/metabolismo , Serina Proteases/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Cálcio/metabolismo , Coagulantes/química , Citosol/metabolismo , Hidrólise , Masculino , Camundongos , Receptores Ativados por Proteinase/antagonistas & inibidores , Transdução de Sinais , América do Sul , Trombina/química , Tripsina/metabolismo
9.
Expert Opin Investig Drugs ; 20(9): 1189-200, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21834748

RESUMO

OBJECTIVES: Selective anticancer cell activity for both cell-penetrating and cationic antimicrobial peptides has previously been reported. As crotamine possesses activities similar to both of these, this study investigates crotamine's anticancer toxicity in vitro and in vivo. RESEARCH DESIGN AND METHODS: In vitro cancer cell viability was evaluated after treatment with 1 and 5 µg/ml of crotamine. In vivo crotamine cytotoxic effects in C57Bl/6J mice bearing B16-F10 primary cutaneous melanoma were tested, with two groups each containing 35 mice. The crotamine-treated group received 1 µg/day of crotamine per animal, subcutaneously which was well tolerated; the untreated group received a placebo. RESULTS: Crotamine at 5 µg/ml was lethal to B16-F10, Mia PaCa-2 and SK-Mel-28 cells and inoffensive to normal cells. In vivo crotamine treatment over 21 days significantly delayed tumor implantation, inhibited tumor growth and prolonged the lifespan of the mice. Mice in the crotamine-treated group survived at significantly higher rates (n = 30/35) than those in the untreated group (n = 7/35) (significance calculated with the Kaplan-Meier estimator). The average tumor weight in the untreated group was 4.60 g but was only about 0.27 g in the crotamine-treated mice, if detectable. CONCLUSIONS: These data warrant further exploration of crotamine as a tumor inhibition compound.


Assuntos
Antineoplásicos/uso terapêutico , Venenos de Crotalídeos/uso terapêutico , Melanoma Experimental/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Venenos de Crotalídeos/toxicidade , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias
10.
Toxicon ; 53(4): 427-36, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19708221

RESUMO

Bothrops atrox is a highly dangerous pit viper in the Brazilian Amazon region. We produced a global catalogue of gene transcripts to identify the main toxin and other protein families present in the B. atrox venom gland. We prepared a directional cDNA library, from which a set of 610 high quality expressed sequence tags (ESTs) were generated by bioinformatics processing. Our data indicated a predominance of transcripts encoding mainly metalloproteinases (59% of the toxins). The expression pattern of the B. atrox venom was similar to Bothrops insularis, Bothrops jararaca and Bothrops jararacussu in terms of toxin type, although some differences were observed. B. atrox showed a higher amount of the PIII class of metalloproteinases which correlates well with the observed intense hemorrhagic action of its toxin. Also, the PLA2 content was the second highest in this sample compared to the other three Bothrops transcriptomes. To our knowledge, this work is the first transcriptome analysis of an Amazonian rain forest pit viper and it will contribute to the body of knowledge regarding the gene diversity of the venom gland of members of the Bothrops genus. Moreover, our results can be used for future studies with other snake species from the Amazon region to investigate differences in gene patterns or phylogenetic relationships.


Assuntos
Bothrops/fisiologia , Venenos de Crotalídeos/metabolismo , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Animais , Venenos de Crotalídeos/genética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA